Acknowledgment. We thank the Research Corp., Utah State Division of University Research, NSF (Fellowship, J.C.B.), and Eloise Gerry Fellowship Fund of Sigma Delta Epsilon, Graduate Women in Science (K.W.M.), for support of this research.

Registry No. [(MeO)₃P]₃CuCl, 67784-65-0; [(MeO)₃P]₂CuBH₄, 67784-66-1.

References and Notes

- Eloise Gerry Fellow, 1977-1978.
- N. Davies, D. Saunders, and M. G. H. Wallbridge, J. Chem. Soc. A, (2)2915 (1970).

- (1970).
 R. A. Ogg and J. D. Ray, Discuss. Faraday Soc., 19, 237 (1955).
 R. E. Williams, J. Inorg. Nucl. Chem., 20, 198 (1961).
 T. J. Marks and L. A. Shimp, J. Am. Chem. Soc., 94, 1542 (1972).
 H. Beall and C. H. Bushweller, Chem. Rev., 73, 465 (1973).
 T. J. Marks and J. R. Kolb, Chem. Rev., 77, 263 (1977).
 H. Beall, C. H. Bushweller, W. J. Dewkett, and M. Grade, J. Am. Chem. Soc. 92, 3484 (1970).

- (b) F. Bardon, S. H. Bardon, M. S. Bowach, and M. Orded, J. M. Chem. Soc., 92, 3484 (1970).
 (c) T. J. Marks and J. R. Kolb, J. Am. Chem. Soc., 97, 27 (1975).
 (l0) T. J. Marks and W. J. Kennelly, J. Am. Chem. Soc., 97, 1439 (1975).
 (l1) S. J. Lippard and K. M. Melmed, J. Am. Chem. Soc., 89, 3929 (1967); Inorg. Chem., 6, 2223 (1967).

Contribution from the Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794

Reaction between Nitric and Sulfamic Acids in Aqueous Solution¹

Laila S. Dzelzkalns and Francis T. Bonner*

Received July 28, 1978

The production of nitrous oxide when sulfamic acid is treated with nitric acid in the presence of sulfuric acid was first reported by Thiele and Lachman² and confirmed by Divers and Haga:3

$$HNO_3 + NH_2SO_3H \rightarrow N_2O + H_2SO_4 + H_2O \quad (1)$$

Baumgarten⁴ reported quantitative yields of N₂O upon treating solid sulfamic acid with HNO₃ of weight percent concentrations 73 and above. While the possible formation of nitramide (H₂NNO₂) was considered,³ it was not detected as product in early investigations. Nitramide is known to decompose to N₂O and would appear to be a likely intermediate species in this reaction, however, and Heubel and Canis⁵ detected formation of this species in a series of reactions between sulfamates and nitrates studied by thermogravimetry. In a subsequent study Canis⁶ reported the production of H_2NNO_2 in low yield (<5%) upon treatment of solid NH_2SO_3H with 95% HNO₃ in the temperature range -50 to -20 °C and higher yields upon addition of NaNO₃. Because small changes in HNO₃ concentration between 93 and 100% have a large effect on the reaction rate, Canis postulated a mechanism involving attack of the species NO_2^+ on sulfamate. She also reported an increase in the rate and proportion of N_2O production upon addition of concentrated H₂SO₄.

In more recent studies,^{7,8} the kinetics of the nitric acidsulfamic acid reaction have been measured at somewhat elevated temperatures and over a broad range of HNO₃ concentrations. Hughes et al.⁸ have made the surprising observation that the reaction proceeds through two initial stages, each involving apparent intermediate formation, and reported that nitrous oxide and sulfate products appear in a third (and slowest) stage which is first order in both sulfamate and nitrate concentrations and whose acidity function dependence indicates involvement of NO_2^+ . These authors have suggested alternative schemes, in each of which H_2NNO_2 is postulated to be

Table I. Mass Spectra of N₂O Product in the H¹⁵NO₃-NH₂SO₃H Reaction

mass	$t = 7 \text{ days}^a$	$t = 21 \text{ days}^a$	$t = 19 \text{ days}^b$
46	0.0038	0.0039	0.0037
45	0.164	0.164	0.107
44	1.00	1.00	1.00
31	0.0113	0.0105	0.0064
30	0.0794	0.0734	0.0823
44-46 ^c	7.35	7.36	5.15
30 + 31 ^c	12.5	12.5	7.2

^{*a*} [HNO₃] = 12.7 ± 0.5 M, [NH₂SO₃H] = 0.091 ± 0.003 M, % ¹⁵N(HNO₃) = 12.8 ± 0.5. ^{*b*} [HNO₃] = 5.9 ± 0.2 M, [NH₂SO₃H] = 0.50 ± 0.02 M, % ¹⁵N(HNO₃) = 6.9 ± 0.3 . ^c % ¹⁵N.

the immediate precursor to product N_2O . We report here experiments with ¹⁵N tracer which bear on this point.

Experiments were carried out on degassed solutions in Y-shaped reaction vessels at room temperature $(25 \pm 2 \ ^{\circ}C)$, employing vacuum-line techniques. Gas products were collected by Toepler pump and analyzed by gas chromatography (Varian Aerograph 920 with a 12-ft Porapak Q column and a Varian A-25 integrator/recorder) or, in the cases of isotopic analyses and gas analyses at very low pressure, on an AEI MS-30 mass spectrometer. Extremely small quantities of gas product were found after extended reaction periods, indicating low rates consistent with the rate constants and activation energy reported by Hughes et al.⁸ Yields of $<2 \mu mol$ were produced in 10 mL of solution at $[NH_2SO_3H] = 0.50$ M and [HNO₃] in the range 0.50-4.5 M, with reaction times between 2.5 and 21 days. Increasing quantities were obtained at higher nitric acid concentrations, up to 114 μ mol with [HNO₃] = 12.5 M, $[NH_2SO_3H] = 0.091$ M, and reaction time 7 days. In each of these cases, the gas proved to be a mixture of N_2 and N_2O , the latter predominating. With a reaction mixture at [HNO₃] = 12.7 M and $[NH_2SO_3H] = 0.088$ M, product gas samples were withdrawn at intervals over a 2-week period, revealing a gradual increase of N₂ content from 1.0% of total gas product at 24 h to 4.7% at 2 weeks. Vacuum line conditions were such that we are confident the observed N_2 was not of atmospheric origin.

Tracer experiments were carried out at two different H¹⁵NO₃ concentration levels, and the mass spectra of resulting separated N₂O product gases are shown in Table I. The unchanging isotopic composition at $[HNO_3] = 12.7$ M between 7 and 21 days of reaction time indicates that no shift of pathway occurred within this period. At both concentration levels the percentage of ¹⁵N observed at masses 30 and 31, i.e., in NO produced by electron impact cracking in the mass spectrometer, is the same as its initial abundance in reactant HNO_3 , within the error of measurement. This is the result that would be expected for N_2O produced by decomposition of an asymmetric, bound intermediate, e.g., nitramide:

$$H_2N*NO_2 \rightarrow N*NO + H_2O$$
(2)

Clusius⁹ has shown that nitramide decomposes to N_2O without rearrangement, and with all ¹⁵N above natural abundance arising from HNO_3 , the decay product at mass 45 should be almost entirely ${}^{14}N{}^{15}N{}^{16}O$ for reaction 2. However, the data in Table I show mass 45 abundances at both HNO₃ concentrations that are substantially greater than predicted for a nitramide precursor; this is reflected in the fact that the percentage of ^{15}N in N_2O (masses 44-46) is significantly greater than half the isotopic content of reactant HNO₃. In addition, N_2O of mass 46, largely ¹⁵N¹⁵N¹⁶O, is present in both experiments at levels that are small but unmistakably greater than predicted on the basis of reaction 2.

The only way that the apparent contradictions posed by these data can be reconciled is to assume that the observed N_2O is a mixture of two kinds, one arising from the asym
 Table II. Isotopic Composition (%) of N₂O As Calculated for

 Assumed Reaction Source Mixtures and Compared with

 Observed Values

mass	12.7 M HNO ₃ , 12.8% ¹⁵ N		5.9 M HNO3, 6.9% ¹⁵ N		
	calcd ^a	obsd	calcd ^b	obsd	
46	0.38	0.33	0.40	0.33	
45	14.0	14.0	9.62	9.63	
44	85.6	85.6	90.0	90.0	
44-46 ^c	7.37	7.36	5.21	5.15	
$30 + 31^{c}$	12.8	12.5	6.91	7.20	1

^a Assuming 90 mol % arises from $H_2N^*NO_2$. ^b Assuming 57 mol % arises from $H_2N^*NO_2$. ^c % ¹⁵N.

metric, bound precursor H_2N*NO_2 and the other from an unbound intermediate whose nitrogen comes from HNO_3 . The latter prescription is met by HNO:

 $H^*NO + H^*NO \rightarrow *N^*NO$ (3)

Reaction 3 would account for the presence of ¹⁵N¹⁶O and would also result in production of ¹⁵N¹⁴N¹⁶O as well as $^{14}N^{15}N^{16}O$, which in turn can account for the elevation of the overall ^{15}N content of the N_2O . To test this idea we have calculated the detailed isotopic composition of N₂O expected from reactions 2 and 3 separately, at the two different levels of ¹⁵N enrichment in HNO₃, by taking into account all possible isomers at masses 44-46 and without neglecting natural abundances of ¹⁵N and ¹⁸O. As shown in Table II, a very close match between observed and calculated isotopic compositions is obtained when we assume a product containing 90 mol % from (2) and 10 mol % from (3) at $[HNO_3] = 12.7$ M and 57 mol % from (2) plus 43 mol % from (3) at $[HNO_3] = 5.9$ M. The closeness of comparison extends to the electronimpact-produced NO composition (mass 30-31) as well as the individual masses 44–46 and overall N_2O composition.

We conclude that the predominant immediate precursor to N₂O product of the nitric acid-sulfamic acid reaction is indeed nitramide, as proposed by Hughes et al.⁸ but that, at least under the slow reaction conditions of our experiments, substantial proportions also arise from the dimerization of an unbound intermediate whose nitrogen atoms come from HNO₃ and which we presume to be HNO. Since N₂O is not a reported or expected product of self-decomposition in HNO₃, we presume that the HNO must have its origins within the HNO₃-NH₂SO₃H reaction itself, a conclusion that is reinforced by the apparent constancy of $N_2 O$ isotopic composition with time in the experiment at $[HNO_3] = 12.7 \text{ M}$ (Table I). HNO could be a product of sequential redox processes, but this seems unlikely since unlabeled hydroxylamine and labeled HNO₂ would also be products; interaction of these species would produce N₂O of isotopic composition substantially different from that of either reactions 2 or 3^{10} (Hughes et al.⁸ have also considered the possibility of N_2O production by an NH₂OH-HNO₂ reaction; our results appear to rule this out definitively.) We believe it most likely that HNO is produced via decomposition of or a competing reaction with an intermediate which precedes the formation of nitramide. In Scheme 2 of Hughes et al.,⁸ for example, it is postulated that the species ONNHOSO₃H is formed and subsequently reacts with HNO_3 on the route to H_2NNO_2 . HNO containing nitrogen of the same isotopic content as initial HNO₃ could be formed from this species by N-N cleavage by hydrolysis or some other means. The higher proportion of N_2O from HNO dimerization observed at the lower HNO₃ concentration could then be interpreted in terms of a weaker competition of HNO₃ for reaction with the intermediate.

Separated N₂ produced at [HNO₃] = 12.7 M was found to contain 7.3 \pm 0.9% ¹⁵N, i.e., just half of the initial H¹⁵NO₃ abundance within error. This product probably arises from reaction between HNO₂ and NH₂SO₃H, which is consistent with the isotopic result. The source of HNO₂ can be selfdecomposition of HNO₃ to NO₂ followed by disproportionative hydrolysis and also the nitric acid–sulfamic acid reaction itself, if Scheme 2 of Hughes et al.⁸ should be correct. An additional reaction source possibility, which would have the same isotopic consequence, is interaction between HNO₂ and H₂NNO₂.¹¹

Acknowledgment. We thank Dr. Charles Iden and the Stony Brook mass spectrometry facility for assistance with isotopic analyses.

Registry No. HNO₃, 7697-37-2; NH₂SO₃H, 5329-14-6; N₂O, 10024-97-2.

References and Notes

- (1) Research supported by the National Science Foundation, Grant No. CHE 76-08766.
- (2) J. Thiele and A. Lachmann, Ber. Dtsch. Chem. Ges. A, 27, 1909 (1894).
- (3) E. Divers and T. Haga, J. Chem. Soc., 69, 1634 (1896).
- (4) P. Baumgarten, Ber. Disch. Chem. Ges. B, 71, 80 (1938).
- (5) J. Heubel and C. Canis, C. R. Hebd. Seances Acad. Sci., 255, 708 (1962).
- (6) C. Canis, Rev. Chim. Miner., 1, 521 (1964).
 (7) D. Attwood and G. Stedman, J. Chem. Soc., Dalton Trans., 508 (1976).
- M. N. Hughes, J. R. Lusty, and H. L. Wallis, J. Chem. Soc., Dalton Trans., 530 (1978).
- (9) K. Clusius, Helv. Chim. Acta, 44, 1149 (1961).
- (10) (a) A. Bothner-By and L. Friedman, J. Chem. Phys., 20, 459 (1952);
 (b) M. N. Hughes and G. Stedman, J. Chem. Soc., 2824 (1953); (c) T. D. B. Morgan, G. Stedman, and M. N. Hughes, J. Chem. Soc. B, 344 (1968); (d) M. A. Hussain, G. Stedman, and M. N. Hughes, *ibid.*, 597 (1968).
- (11) M. N. Hughes and J. R. Lusty, J. Chem. Soc., Dalton Trans., 1175 (1976).

Contribution from Bell Laboratories, Murray Hill, New Jersey 07974

Preparation and Characterization of Tetrakis(2,4-pentanedionato)hexakis(benzotriazolato)pentacopper(II)

James H. Marshall

Received April 5, 1978

We wish to report some experimental results with the title compound (I) which strongly suggest unique tridentate bonding for each of the benzotriazole anions (BTA^{-})

One structure for I consistent with our results is a tetrahedral array of Cu(II) ions surrounding a central Cu(II) ion held together by bridging tridentate BTA⁻ and terminated by 2,4-pentanedionato (acac⁻) end caps (Figure 1).¹ It is easily built from molecular models and may be viewed as a Cu₅BTA₆⁴⁺ cation neutralized by four acac⁻ anions.

Compound I is prepared by mixing equimolar amounts of 0.1 M methanol solutions of $Cu(NO_3)_2 \cdot 3H_2O$, 2,4-pentanedione, and BTA followed by addition of ammonia to basic pH or by mixing dichloromethane solutions of $Cu(acac)_2$ and BTA in equimolar proportions.² If the former method is employed, the clear dark green solution is extracted with cyclohexane and the cyclohexane extracts are washed with H₂O and then dried with anhydrous Na₂SO₄. The cyclohexane is removed by evaporation, the green solid is recrystallized from 1,2-dichloroethane–acetonitrile (ca. 1:20), and the deep green crystals are heated overnight in vacuo at 80 °C. Anal. Calcd for C₅₆H₅₂N₁₈O₈Cu₅: C, 47.26; H, 3.69; N, 17.73; Cu, 22.33. Found: C, 47.22; H, 3.69; N, 17.65; Cu, 23.12.³ Osmometric molecular weight determinations yielded 993 (CHCl₃)⁴ and 1335 (benzene); 1423 is calculated for I.⁵ Yields of I based